
COP 4710: Indexing Page 1 Mark Llewellyn ©

COP 4710: Database Systems
Spring 2006

CHAPTER 10 – Indexing

COP 4710: Database Systems
Spring 2006

CHAPTER 10 – Indexing

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790
http://www.cs.ucf.edu/courses/cop4710/spr2006

COP 4710: Indexing Page 2 Mark Llewellyn ©

Basic Concepts Behind Indexing
• Indexing mechanisms used to speed up access to desired data.

– E.g., author catalog in library
• Search Key - attribute to set of attributes used to look up records

in a file.
• An index file consists of records (called index entries) of the

form

• Index files are typically much smaller than the original file.
• Two basic kinds of indices:

– Ordered indices: search keys are stored in sorted order
– Hash indices: search keys are distributed uniformly across

“buckets” using a “hash function”.

search-key pointer

COP 4710: Indexing Page 3 Mark Llewellyn ©

Index Evaluation Metrics
• Access types: The types of access that are efficiently supported.

– Finding records with a specified attribute value.

– Finding records with an attribute value falling in a specified range of
values.

• Access time: The time required to find a particular data item, or set of items.

• Insertion time: The time it takes to insert a new data item. This value
includes the time required to find the correct place to insert, as well as the
time required to update the index structure.

• Deletion time: The time it takes to delete a data item. This value includes the
time required to find the item, as well as the time required to update the index
structure.

• Space overhead: The additional space required by an index structure.
Provided that the amount of additional space is moderate, it is usually
worthwhile to sacrifice the space to achieve improved performance.

COP 4710: Indexing Page 4 Mark Llewellyn ©

Ordered Indices
• In an ordered index, index entries are stored sorted on the search key

value. E.g., author catalog in library.

• Primary index: in a sequentially ordered file, the index whose search
key specifies the sequential order of the file.
– Also called clustering index

– The search key of a primary index is usually but not necessarily the
primary key.

• Secondary index: an index whose search key specifies an order
different from the sequential order of the file. Also called
non-clustering index.

• Index-sequential file: ordered sequential file with a primary index.

• One of the oldest index schemes used in database systems. Designed
for applications that require both sequential processing of entire files as
well as random access to individual records.

COP 4710: Indexing Page 5 Mark Llewellyn ©

Dense Index Files
• Dense index — Index record appears for every search-key value

in the file.

COP 4710: Indexing Page 6 Mark Llewellyn ©

Sparse Index Files
• Sparse Index: contains index records for only some search-key

values.
– Applicable when records are sequentially ordered on search-key

• To locate a record with search-key value K we:
– Find index record with largest search-key value < K
– Search file sequentially starting at the record to which the index

record points
• Less space and less maintenance overhead for insertions and

deletions.
• Generally slower than dense index for locating records.
• Good tradeoff: sparse index with an index entry for every block in

file, corresponding to least search-key value in the block.

COP 4710: Indexing Page 7 Mark Llewellyn ©

Example of Sparse Index Files

COP 4710: Indexing Page 8 Mark Llewellyn ©

Multi-level Indexing
• If primary index does not fit in memory, access becomes

expensive.

• To reduce number of disk accesses to index records, treat
primary index kept on disk as a sequential file and construct a
sparse index on it.
– outer index – a sparse index of primary index

– inner index – the primary index file

• If even outer index is too large to fit in main memory, yet
another level of index can be created, and so on.

• Indices at all levels must be updated on insertion or deletion
from the file.

COP 4710: Indexing Page 9 Mark Llewellyn ©

Example of
Multi-level
Indexing

COP 4710: Indexing Page 10 Mark Llewellyn ©

Index Update: Deletion

• If deleted record was the only record in the file with its particular
search-key value, the search-key is deleted from the index also.

• Single-level index deletion:

– Dense indices – deletion of search-key is similar to file record
deletion.

– Sparse indices – if an entry for the search key exists in the
index, it is deleted by replacing the entry in the index with the
next search-key value in the file (in search-key order). If the
next search-key value already has an index entry, the entry is
deleted instead of being replaced.

COP 4710: Indexing Page 11 Mark Llewellyn ©

Index Update: Insertion
• Single-level index insertion:

– Perform a lookup using the search-key value appearing in the
record to be inserted.

– Dense indices – if the search-key value does not appear in the
index, insert it.

– Sparse indices – if index stores an entry for each block of the
file, no change needs to be made to the index unless a new
block is created. In this case, the first search-key value
appearing in the new block is inserted into the index.

• Multilevel insertion (as well as deletion) algorithms are simple
extensions of the single-level algorithms

COP 4710: Indexing Page 12 Mark Llewellyn ©

Secondary Indices

• Frequently, one wants to find all the records whose values in a
certain field (which is not the search-key of the primary index)
that satisfy some condition.

– Example 1: In the account database stored sequentially by
account number, we may want to find all accounts in a
particular branch.

– Example 2: as above, but where we want to find all
accounts with a specified balance or range of balances.

• We can have a secondary index with an index record for each
search-key value; index record points to a bucket that contains
pointers to all the actual records with that particular search-key
value.

COP 4710: Indexing Page 13 Mark Llewellyn ©

Secondary Index on balance field of account

COP 4710: Indexing Page 14 Mark Llewellyn ©

Primary and Secondary Indices

• Secondary indices must be dense.

• Indices offer substantial benefits when searching for records.

• When a file is modified, every index on the file must be
updated, Updating indices imposes overhead on database
modification.

• Sequential scan using primary index is efficient, but a
sequential scan using a secondary index is expensive

– each record access may fetch a new block from disk

COP 4710: Indexing Page 15 Mark Llewellyn ©

B+-Tree Index Files
• B+-tree indices are an alternative to indexed-sequential files.

• Disadvantage of indexed-sequential files: performance degrades
as file grows, since many overflow blocks get created. Periodic
reorganization of entire file is required.

• Advantage of B+-tree index files: automatically reorganizes itself
with small, local, changes, in the face of insertions and deletions.
Reorganization of entire file is not required to maintain
performance.

• Disadvantage of B+-trees: extra insertion/deletion overhead and
space overhead.

• Advantages of B+-trees outweigh disadvantages, and they are
used extensively.

COP 4710: Indexing Page 16 Mark Llewellyn ©

B+-Tree Index Files (cont.)

• A B+-tree is a rooted tree satisfying the following properties:
– All paths from root to leaf are of the same length (i.e., all leaves are on

the same level).

– Each node that is not a root or a leaf holds k-1 keys and k references to
subtrees where

– A leaf node holds k–1 keys where

– Special cases:

• If the root is not a leaf, it has at least 2 children.

• If the root is a leaf (that is, there are no other nodes in the tree), it can
have between 0 and (k–1) values.

⎡ ⎤ nk2/n ≤≤

⎡ ⎤ nk2/n ≤≤

COP 4710: Indexing Page 17 Mark Llewellyn ©

B+-Tree Node Structure
• Typical node

– Ki are the search-key values

– Pi are pointers to children (for non-leaf nodes) or pointers to
records or buckets of records (for leaf nodes).

• The search-keys in a node are ordered

K1 < K2 < K3 < . . . < Kn–1

COP 4710: Indexing Page 18 Mark Llewellyn ©

Leaf Nodes in B+-Trees
• For i = 1, 2, . . ., n–1, pointer Pi either points to a file record with

search-key value Ki, or to a bucket of pointers to file records,
each record having search-key value Ki. Only need bucket
structure if search-key does not form a primary key.

• If Li, Lj are leaf nodes and i < j, Li’s search-key values are less
than Lj’s search-key values

• Pn points to next leaf node in search-key order

COP 4710: Indexing Page 19 Mark Llewellyn ©

Non-Leaf Nodes in B+-Trees
• Non leaf nodes form a multi-level sparse index on the leaf nodes.

For a non-leaf node with m pointers:

– All the search-keys in the subtree to which P1 points are less
than K1

– For 2 ≤ i ≤ n – 1, all the search-keys in the subtree to which Pi
points have values greater than or equal to Ki–1 and less than
Km–1

COP 4710: Indexing Page 20 Mark Llewellyn ©

Example of a B+-tree

B+-tree for account file (n = 3)

COP 4710: Indexing Page 21 Mark Llewellyn ©

Example of B+-tree

• Leaf nodes must have between 2 and 4 values
(⎡(n–1)/2⎤ and n –1, with n = 5).

• Non-leaf nodes other than root must have between 3 and 5
children (⎡(n/2⎤ and n with n =5).

• Root must have at least 2 children.

B+-tree for account file (n - 5)

COP 4710: Indexing Page 22 Mark Llewellyn ©

Observations about B+-trees
• Since the inter-node connections are done by pointers, “logically”

close blocks need not be “physically” close.

• The non-leaf levels of the B+-tree form a hierarchy of sparse
indices.

• The B+-tree contains a relatively small number of levels
(logarithmic in the size of the main file), thus searches can be
conducted efficiently.

• Insertions and deletions to the main file can be handled
efficiently, as the index can be restructured in logarithmic time.

COP 4710: Indexing Page 23 Mark Llewellyn ©

Queries on B+-Trees
Find all records with a search-key value of k.

1. Start with the root node
1. Examine the node for the smallest search-key value > k.
2. If such a value exists, assume it is Kj. Then follow Pi to

the child node
3. Otherwise k ≥ Kn–1, where there are n pointers in the

node. Then follow Pn to the child node.
2. If the node reached by following the pointer above is not a

leaf node, repeat the above procedure on the node, and
follow the corresponding pointer.

3. Eventually reach a leaf node. If for some i, key Ki = k
follow pointer Pi to the desired record or bucket. Else no
record with search-key value k exists.

COP 4710: Indexing Page 24 Mark Llewellyn ©

Queries on B+-Trees (cont.)

• In processing a query, a path is traversed in the tree from the
root to some leaf node.

• If there are K search-key values in the file, the path is no longer
than ⎡ log⎡n/2⎤(K)⎤.

• A node is generally the same size as a disk block, typically 4
KB, and n is typically around 100 (40 bytes per index entry).

• With 1 million search key values and n = 100, at most
log50(1,000,000) = 4 nodes are accessed in a lookup.

• Contrast this with a balanced binary free with 1 million search
key values — around 20 nodes are accessed in a lookup
– above difference is significant since every node access may

need a disk I/O, costing around 20 milliseconds!

COP 4710: Indexing Page 25 Mark Llewellyn ©

Updates on B+-Trees: Insertion
• Find the leaf node in which the search-key value would appear

• If the search-key value is already there in the leaf node, record is
added to file and if necessary a pointer is inserted into the bucket.

• If the search-key value is not there, then add the record to the
main file and create a bucket if necessary. Then:

– If there is room in the leaf node, insert (key-value, pointer)
pair in the leaf node

– Otherwise, split the node (along with the new (key-value,
pointer) entry) as discussed in the next slide.

COP 4710: Indexing Page 26 Mark Llewellyn ©

Updates on B+-Trees: Insertion (cont.)

• Splitting a node:
– take the n(search-key value, pointer) pairs (including the one being inserted)

in sorted order. Place the first ⎡ n/2 ⎤ in the original node, and the rest in a
new node.

– let the new node be p, and let k be the least key value in p. Insert (k,p) in
the parent of the node being split. If the parent is full, split it and propagate
the split further up.

• The splitting of nodes proceeds upwards till a node that is not full is found. In
the worst case the root node may be split increasing the height of the tree by 1.

Result of splitting node containing Brighton and Downtown on
inserting Clearview into the B+-tree shown on page 20 (n = 3)

COP 4710: Indexing Page 27 Mark Llewellyn ©

Updates on B+-Trees: Insertion (cont.)

before

Result of splitting node containing Brighton and Downtown on inserting Clearview

after

COP 4710: Indexing Page 28 Mark Llewellyn ©

Updates on B+-Trees: Deletion
• Find the record to be deleted, and remove it from the main file

and from the bucket (if present)

• Remove (search-key value, pointer) from the leaf node if there is
no bucket or if the bucket has become empty

• If the node has too few entries due to the removal, and the entries
in the node and a sibling fit into a single node, then

– Insert all the search-key values in the two nodes into a single
node (the one on the left), and delete the other node.

– Delete the pair (Ki–1, Pi), where Pi is the pointer to the deleted
node, from its parent, recursively using the above procedure.

COP 4710: Indexing Page 29 Mark Llewellyn ©

Updates on B+-Trees: Deletion (cont.)

• Otherwise, if the node has too few entries due to the removal, and
the entries in the node and a sibling fit into a single node, then

– Redistribute the pointers between the node and a sibling such
that both have more than the minimum number of entries.

– Update the corresponding search-key value in the parent of the
node.

• The node deletions may cascade upwards till a node which has
⎡n/2 ⎤ or more pointers is found. If the root node has only one
pointer after deletion, it is deleted and the sole child becomes the
root.

COP 4710: Indexing Page 30 Mark Llewellyn ©

Examples of B+-Tree Deletion

Before

The removal of the leaf node containing “Downtown” did not result in its parent having
too few pointers. So the cascaded deletions stopped with the deleted leaf node’s
parent.

After deleting “Downtown”

COP 4710: Indexing Page 31 Mark Llewellyn ©

Examples of B+-Tree Deletion (cont.)

• Node with “Perryridge” becomes underfull (actually empty, in this special case) and
merged with its sibling.

• As a result “Perryridge” node’s parent became underfull, and was merged with its sibling
(and an entry was deleted from their parent).

• Root node then had only one child, and was deleted and its child became the new root
node.

Before

After deletion of “Perryridge”

COP 4710: Indexing Page 32 Mark Llewellyn ©

Example of B+-tree Deletion (cont.)

• Parent of leaf containing Perryridge became underfull, and borrowed a pointer
from its left sibling.

• Search-key value in the parent’s parent changes as a result.

After deletion of “Perryridge”

Before

COP 4710: Indexing Page 33 Mark Llewellyn ©

B+-Tree File Organization
• Index file degradation problem is solved by using B+-tree

indices. Data file degradation problem is solved by using B+-tree
file organization.

• The leaf nodes in a B+-tree file organization store records, instead
of pointers.

• Since records are larger than pointers, the maximum number of
records that can be stored in a leaf node is less than the number
of pointers in a nonleaf node.

• Leaf nodes are still required to be half full.

• Insertion and deletion are handled in the same way as insertion
and deletion of entries in a B+-tree index.

COP 4710: Indexing Page 34 Mark Llewellyn ©

B+-Tree File Organization (cont.)

• Good space utilization important since records use more space than pointers.
• To improve space utilization, involve more sibling nodes in redistribution

during splits and merges
– Involving 2 siblings in redistribution (to avoid split / merge where possible)

results in each node having at least entries.

Example of B+-tree File Organization

⎣ ⎦3/2n

